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ABSTRACT

Due to the growing number and size of biochemical
network computer models an efficient co-operation among
experts industrialists, biologists and modellers in industrial
biotechnology is becoming a topical issue. In order to
speed up the introduction of systems biology achievements
into production an organism independent universal
collaboration protocol is mnecessary incorporating a
sequence of actions starting with a choice of criterion and
model up to industrial tests.

Protocol of cooperation of industrialists, biologists and
modellers  engineering the performance of a
microorganism using systems biology approach to improve
the efficiency of biotechnological process is developed.
Method is described in form of an algorithm that consists
of four consecutive stages starting with determination of
the product of interest and optimization criteria and ending
by an estimation of industrial process feasibility analysis
taking into account the features of the available industrial
equipment.

Application of protocol in yeast glycolysis optimization is
given as example.

The protocol facilitates efficient resource usage and time
savings in biochemical network optimization process due
to rational sequence of operations and reduction of
optimization duration.

INTRODUCTION

Interdisciplinary scientific fields generally and systems
biology (Bruggeman and Westerhoff, 2007; Kitano, 2002)
in particular suffers from efficient methods of
interdisciplinary ~ collaboration  between  biologists,
modellers, mathematicians, chemists, bioengineers and
others solving joint tasks (Aebersold, Hood, and Watts,
2000; Ideker, 2004). Additional problem is the industrial
implementation of scientific achievements because of
different attitude and expectations of scientists and
industrialists about industrially attractive biotechnological
process (Otero and Nielsen, 2010). This kind of problem
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can be addressed by a development of a collaborative
optimization protocol.

This paper describes a protocol of cooperation of
industrialists, biologists and modellers engineering the
performance of a microorganism using systems biology
approach to improve the efficiency of biotechnological
process. Method is described in form of an algorithm that
consists of four consecutive stages starting with
determination of the product of interest and optimization
criteria and ending by an estimation of industrial process
feasibility analysis taking into account the available
equipment.

STATE OF THE ART

Currently engineering of intracellular biochemical
processes is a growing field in biotechnology aiming to
reduce impact of several efficiency related topics: increase
of product/substrate ratio, reduction of energy costs,
reduction of side products and others. The development of
new bioprocesses has also relatively new topics to cope
with. Growing number of mathematical models of cellular
bioprocesses stimulate increasing use of simulations and
optimization of mathematically described process (Li et.al.
2010). Usually dynamic models of intracellular
biochemical networks are described in a form of a set of
non-linear differential equations that can be optimized
using time consuming numerical methods (Hirmajer,
Balsa-Canto, and Banga, 2009).

Usually optimization is made by biologists creating a
hypothesis of a process improvement involving a small
number of system elements because of difficulty to deal
with high number of cross-talks and interactions between
elements of systems — reactants and enzymes of
biomolecular reactions inside the cell. Hypotheses are
usually generated by biologists that are specialized in a
particular organism. Then hypothesis is tested in a
dynamic model. In case of success a biological experiment
is following to test the feasibility of a process in a living
organism. That is essential because engineering is
performed using a small scale models (up to 30 reactions)
of the process of interest because full scale dynamic
models (thousands of reactions) are not developed yet.
Problem of the above mentioned approach is the high
probability that not a complete space of optimal solutions
is searched systematically (Schulz, Bakker, and Klipp,



2009) even in 30 reactions models. Thus complex
interactions and non-intuitive industrially interesting
solutions may be not hypothesized and tested. Additional
problem is the limitation on the number of organisms that
are known to particular teams of biologists. That increase
risk of finding suboptimal solution of a problem because
of lack of experience.

Another topic that reduce the intensity of implementation
of scientific achievements is that industrialists are usually
involved in late stages of optimization process and early
rejection of biologically attractive but industrially
uninteresting solutions are rejected in a stage when
significant amount of resources are already spent.

There is a need for industrially oriented protocol of
collaboration of industrialists, biologists and modellers in
development of biotechnologically effective engineered
organisms exploring all the space of possible solutions
with early rejections of industrially uninteresting solutions.
This article describes protocol of optimization of
concentrations of reaction speed regulating enzymes.
Concentrations of enzymes can be altered by influencing
the transcription and translation (Klipp, 2005) intensity of
enzymes . Enzyme concentration can be both increased
and reduced thus respectively increasing and decreasing
reaction flow (speed of the reaction). The protocol can be
adapted for a wider range of tasks during optimization of
biochemical networks.

OPTIMIZATION PROTOCOL
The protocol consists of four interlinked stages as shown

in Figure 1. Each stage is meant to narrow the field of
search of the best solutions as early as possible.
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Figure 1 Four stages of optimization protocol

Stage 1: choice of the criteria and model

The first stage — choice of the criteria and model (Figure 2)
is collaboration between industrialists, biologists and

modellers to set the scope of the optimization work. It has
a great influence on costs and duration of the optimization
process. Main contributors at this stage are the
industrialists. They should clearly express their interests
both in mathematical terms and in form of other
limitations including legislation, environmental issues and
others which may be unknown by biologists and
modellers. Still collaboration with biologists and modellers
is needed to assure that the criteria’s can be calculated
from the chosen model. Extension of a model may be
needed to link it with the criteria.
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Figure 2 Algorithm for the stage “choice of the criteriz
and model”

Choice of criteria (1.1.) is a complex task. Too narrow
criteria can limit the search in a very narrow area of
possible solution space and end without industrially
interesting solution at early stage. Too general criteriz -
might cause the opposite drawback — search can be toc
wide and limitations that were not indicated at early stage
can come up at the fourth stage and solutions might be
rejected already after spending significant resources to
analyze it. A model that includes criteria related processes
should be chosen (step Choice of a model (1.2.)) from
respective databases (Chen et.al. 2010; Oliver and Snoep. |
2004) by modellers in collaboration with biologists. The °
model can be slightly adapted to have a steady state
(Klipp, 2005) that is a prerequisite for industrial
biotechnological process. The next step is the evaluation
of the initial criteria value (1.3.) (by modeller) of the
original model before optimization. In the next step the
determination of minimal increase of the criteria (1.4.)
should be done by industrialist operating mainly with
economical factors. Thus it is defined that criteria values




below the minimal increase are not interesting for
industrialist and further research is meaningless if minimal
increase is not reached.

Stage 2: determination of the optimization potential

The task of the second stage (Figure 3) is the
determination of the optimization potential. It is necessary
to find out if the chosen criteria and organism can give
increase of optimization criteria above the value defined in
the first stage. In case of failure the first stage has to be
repeated.
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Figure 3 Algorithm for the stage “determination of the
optimization potential”

The first step of this stage is the choice of controllable
reactions (2.1.) in the model that happen by the help of an
enzyme and therefore their flow can be adjusted by change
of enzyme concentration. Reactions can be selected by
biologists and modellers using bases SABIO-RK (Wittig
et.al. 2006), BRENDA (Scheer etal. 2006) or KEGG
(Kanehisa et.al. 2010). The next step is the execution of
optimization process (2.2.) performed by modeller
making optimization run where all the reaction related
parameters are allowed to change in a wide range, for
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instance, from -99% of the initial value of the original
model up to + 1000%. Modellers should consult with
biologists because 1) some reactions may need some
biomass related flow and 2) to interpret biologically
correctly the reaction parameters of optimal solution. This
step can be performed using general numerical
optimization software or a systems biology related tools
and model formats like COPASI (Hoops et.al. 2006),
Potters Wheel (Maiwald and Timer, 2008), SB Toolbox2
(Schmidt and Jirstrand, 2006) and others. In case of a big
model with high number of parameters the optimization
run can take long time (several days) until optimization
potential is clarified. Therefore optimization process
should be observed by a modeller asking “is the minimal
increase of the criteria reached?” (2.3.). In case of a
negative answer the question “is the optimization
potential reached? (2.4.) should be estimated. In other
words it means: is the optimization reached maximal
value? Positive answer indicates that the optimization has
ended and it’s potential is not high enough and industrialist
should be asked: “can a new criteria or model be
applied?” (2.5.) to see if adaptation of criteria’s can help.
Negative answer means that the optimization protocol has
not found industrially feasible solution even in modelling
level. In case of positive answer to the question 2.3. the
criteria has to checked in the step “Modification of
criteria needed?” (2.6.). The question should be asked to
the industrialist as the optimization process and growth of
criteria could lead to unrealistic values of parameters.
Negative answer to the question 2.6. should be followed
by determination of total optimization potential (2.7.)
done by modeller running the optimization until progress
of optimization criteria reaches it’s best value for given
model. An indication for that is a long stagnation of
optimization process.

Stage 3: enzyme ranking by efficiency

The third stage enzyme ranking by their efficiency in
increase of the criteria (Figure 4) is performed by the
modeller except for the step 3.5. which is done by
industrialist. Some of enzymes (via reactions that they
control) are strongly contributing in increase of criteria
while some of them show very small or no influence on
the criteria. Change of concentration of particular enzyme
is costly. So it would be of advantage to find out 1) how
the values of criteria are growing depending on the number
of modified enzymes and 2) which would be the best
enzymes to influence in case of modification of set of one,
two, three and so on enzymes. For instance in case of one
enzyme the most efficient is the enzyme A reaching 40%
(increase of 40%) of total optimization potential, in case of
two enzymes those are enzymes B and D reaching 65%
(increase =65-40=25%) and in case of three enzymes those
are A, D and E covering 73% (increase =73-65=8%) of
total optimization potential.

The increase of criteria becomes smaller and smaller while
the number of enzymes in combinations are increasing.
That leads to a situation when adding of more enzymes to
be modified becomes too expensive for the small increase
of expected efficiency.
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Figure 4 Algorithm for the stage “enzyme ranking by
efficiency”

Scanning of all the possible combinations (no order
important and no repetition allowed) of enzymes to be
modified the number of optimizations K can be calculated

by formula:
n!
K= _ 1
,;j rl(n—r)! e

where r — number of available enzymes to choose from, j -
up to which number of enzymes combinations are counted.
Thus a model with 15 enzymes that can be influenced in
case of up to five enzyme combinations would have 4943
possible combinations to optimize. In case of up to 10
there would be 30826 combinations and in case of 15 there
would be 32767 combinations. Target of this stage is to
find the best combinations of enzymes for any number of
enzymes to be modified in shortest time possible.

The first step is the initial enzyme ranking by efficiency
(3.1.).. Depending on the model several methods can be
used by the modeler to determine the influence of
concentration change of a particular enzyme on the other
reactions and the value of the criteria. Some of them are
Metabolic Control Analysis (Crabtee et.al.1985), (Fell,
2005), (Fell and Sauro, 1985), (Reder,1988), ranking
accordingly to the efficiency increase in case of single
optimized enzyme or others. It is assumed that the
efficiency rank will not be predicted accurately because of
nonlinearity of nonlinear differential equations.
Optimization adding enzymes one by one in ranked
order (3.2.) has to be performed by modeller in a cycle
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with the next step “Is the criteria increase smaller than
in the previous step?” (3.3.) as long as the answer is
negative. Step 4.3. is followed in cycle by enzyme
ranking accordingly in silico (computer simulation)
efficiency (3.4.) changing the efficiency rank of enzymes
accordingly the optimization outcome. If the efficiency
increase in the step is smaller than for the previous number
of enzymes (3.3.) the question “Is the increase of criteria
profitable?” (3.5.) comes up. Negative answer leads to the
end of the cycle and return to the best profitable
solution with reduced number of enzymes by one (3.6.)
that will be analysed in the fourth stage. During the step
3.2. each case of criteria increase and corresponding set of
optimization parameter values has to be saved as some of
solutions may have weak stability and suboptimal
solutions may become the best feasible ones in the fourth
stage.

Stage 4: stability analysis of best solutions

During the fourth stage “Sensitivity analysis of best
solutions” (Figure 5) the best technically feasible
stationary state should be found taking into account the
dynamic parameters of both the cellular dynamics and
industrial control system. Modellers and industrialists are
the main contributors at this stage.
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solution
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4.5.Choice of the second best
solution

|
i

4.4 Industrial tests

Figure 5 Algorithm for the stage “sensitivity analysis of
best solutions”

The stage starts with a question “is the solution better
than the best solution with reduced number of enzymes
by one?” (4.1.). In case of negative answer the best




solution of combination with less number of enzymes has
to be preferred because due to reduced complexity and
realization costs. Thus return to the step 3.6. is needed.
Stability analysis of the solution (4.2.) is the next step to
be performed. Robustness of bioprocess has to be
estimated under known dynamic parameters of cellular
biochemical process of interest and the accuracy and
dynamic parameters of the available control system of of
the bioreactor or other industrial system. Different
approaches can be used depending on the available
information about the control system. One of methods is
the implementation of dynamic model of the control
system into the model of the bioprocess and run the
stability analysis of simultaneous interaction of both
systems.

If the answer to the question “Is the solution in silico
industrially stable?” (4.3.) is positive, the industrial
tests (4.4.) can be started on level of biological
experiments and in case of success may be implemented in
the industrial process. In case of negative answer to the
question 4.3. the choice of the second best solution (4.5.)
has to be performed by a modeller and return to the step
4.1 thus forming a cycle.

The optimization progress recorded in the step 3.2. is used
in the step 4.5. If the solution that corresponds to the best
value of criteria is not stable, the solution with next best
criteria value has to be analyzed for stability.

APPLICATION CASE

The protocol has been applied to increase the profitability
of yeast glycolysis in production of ethanol from glucose
using model published by Hynne and colleagues (Hynne
et.al.2001). The application case is related to the
production of biofuels. The model contains 24 reactions
and 25 reactants (Figure 6). 15 reactions are performed by
the help of enzymes with variable concentrations that
influence flow of the corresponding reaction. Using the
protocol and software tool COPASI combinations of

modified enzyme concentrations was found. The
optimization criteria was:
Ethanolflow
= m + 5= Ethanol flow (2)
where

Ethanol flow — product produced,
Glucose flow — feedstock consumed.

As a result increase of the criteria from 4,99 (Ethanol flow
= 0,804 mmol/min, Glucose flow = 0,832 mmol/min) was
increased to 13,3 (Ethanol flow = 2,27 mmol/min, Glucose
flow = 1,15 mmol/min).

The fourth stage of the protocol was not performed as it
depends on equipment parameters and may be specific
from case to case. The increase of ethanol production was
reached without ensuring the production of biomass and
therefore might perform in biological experiments with
lower efficiency than in computer simulations.
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Figure 6 Yeast glycolysis model (Hynne, 2001)
Screenshot from JWS online website

(http://jjj.biochem.sun.ac.za/database/hynne/index.html)
CONCLUSION

The developed protocol describes cooperation of
industrialists, biologists and modellers optimizing the
industrial performance efficiency of a microorganism. The
protocol consists of four consecutive stages: 1) choice of
the criteria and model, 2) determination of the
optimization potential enzyme 3) ranking by efficiency
and 4) sensitivity analysis of best solutions.

Early rejecting of industrially and/or biologically
unfeasible solutions increase the efficiency of
optimization.

The protocol propose systematic scan the solution space
for the best solutions thus checking also contra intuitive
solutions and eliminating subjective approach of particular
scientist.

Significant in silico increase of yield and and ethanol
production is achieved in case of yeast glycolysis models
(Hynne et.al. 2001).
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