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ABSTRACT 
 

In the cell, tissue, organ and organism under different conditions operate metabolic, protein interaction, gene or genetic regulatory and signaling 
networks that describe biochemical reactions, biochemical or biophysical process. The biochemical networks can present the relationship between 
genes and gene products, proteins, metabolites and etc. The exploration of these networks is the key task in systems biology in the last few years 
and helps to understand some cellular process, functions or properties of biological system better.  

We provide researchers and coterie information on network structure analysis, existing and used topological features with the following goals: 1) 
to accumulate the existing knowledge about the network structure analysis; 2) to provide a list of topological features and characterize the most of 
them, mentioning its biological sense; 3) to provide the information of the existing software tools for the structure analysis.  

In this research paper, we focus on the structure of the networks, the topological parameters such as a degree distribution, a path length, a 
clustering coefficient, motifs such as feedback loops, a feedforward, self-loops and the other features. 

 
1 INTRODUCTION 
 
The goal of systems biology is to understand living 
organisms at the systems level, combining quantitative 
information on individual components in order to 
understand the emergent behaviors that result [14]. 
According to the systems theory, a system is defined as the 
set of objects with relations between objects and these 
properties. The living organisms can be considered as 
biological systems. In most cases, the biological systems 
are very complex. System biologists build a system-level 
understanding of how the biological world works and solve 
problems by understanding systems and then applying that 
knowledge to control them [20].  

During the last several years, the biological research 
produces increasing volumes of data describing genome 
sequence of biological organisms, cellular components, 
their interactions, and states of biochemical networks for 
model organisms [12]. This available information about 
biological entities and their interactions enable us to 
consider different organisms as biological systems which 
control the genetic information [22].  

To understand biology at the system level, we must 
examine the structure and dynamics of cellular and 
organismal function (Kitano) [1]. According to the systems 
theory, a structure is defined as the set of elements and 
relations (links) between them that define functions of 
system and distribution of the purposes [7]. Analyzing the 
structure, usually the researchers are interested in the 
properties of the system, which remain invariable for a long 
period of time or functioning on the system. Living 
organisms are subjected to the process of genetic mutations 

dependant on environmental conditions (external 
perturbations), it can be necessary to detect invariable and 
varyable system properties. It can be done with the purpose 
to compare several systems of one type, to detect influence 
of the certain and separate factors on the system. 

In this research paper, we focused on the structure of 
biochemical networks and their exploration. 

 

2 EXPLORATION OF BIOCHEMICAL 
NETWORKS 

 

The goals of systems biology are to understand the 
mechanisms of how biochemical networks generate 
particular cellular functions in response to environmental 
stresses or genetic changes [18]. Structural or topological 
analysis of cellular interaction networks contributes to a 
deeper understanding of network-wide interdependencies, 
causal relationship, and basic functional capabilities. 
Structural analysis, towards a functional analysis of the 
structure is not based on quantitative and dynamic 
properties and can thus only provide qualitative answers 
[13]. 

It is important and necessary to explore, for example, 
protein interaction or gene regulatory networks, while they 
play a key role in disease understanding and accurate drug 
targets [11]  finding. Structural or topological (parameter-
free) and dynamic models are used to explore the networks. 
It is necessary to notice that the basis of each model is the 
structure. In this paper, we focused on a structural model. 
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In structural models networks are represented in directed or 
undirected graph form [13, 28, 29, 31] and mixed graphs 
[28], that consist of nodes and edges. Nodes represent 
genes, gene products, proteins, chemical compounds or 
small molecules. Graph links (edges in undirected graph or 
arcs in directed graph) represent functional relationships [8] 
i.e., various types of interactions or associations between 
the pair of nodes, e.g. metabolic reactions or events, gene 
modification, protein/protein-nucleotide interactions, 
protein modification, regulatory relationships such as 
transcriptional and translational regulation, signaling 
pathways etc. [25, 29]. Connections can be directed or 
undirected dependent on graph type; they can have physical 
meaning, denote general associations; they can represent 
shared characteristics [28] between components. Nodes 
depend on the number of connections and the type of graph 
can be hubs (highly connected nodes) [30] and metanodes 
[28]. 

The choice of the network representation is often dictated 
by a research issue. Directed networks are suitable when 
the interactions between two components have a well-
defined direction, for example, the direction of metabolic 
flow from substrates to products, or the information flow 
from transcription factors to the genes that they regulate. 
For example, Zhao et al in their work [27] represent Homo 
sapiens metabolic network by a directed graph, which 
nodes correspond to metabolites and the arcs – to reactions 
between these metabolites, in which irreversible reactions 
are represented as directed arcs while reversible ones as bi-
directed arcs (see Fig.3.). Transcription factor binding 
networks [28] can be represented too as directed networks. 

Undirected networks, such as protein interaction networks, 
represent a mutual relationship: if protein A binds to 
protein B, then protein B binds to protein A. This type of 
representation also often applies to predictions made by 
high-throughput proteomic or genomic analysis, or indirect 
links based on shared genes or protein components between 
pathways and complexes [28]. 

 

3 FEATURES AND PROPERTIES OF NETWORK 
STRUCTURE 

 

Networks have “emergent” properties that are distinct from 
those of their individual components. Emergent properties 
are non-linear, aggregated and combinatory effects 
generated by the interaction of the components of the 
network. For example, properties such as topology, 
information flow and the stable state of a network can only 
be detected at the network level, not by examining the 
individual components such as genes or proteins. The 
structural and dynamic features of genetic networks 
ultimately contribute to biological functions, robustness 
and evolvability of the networks [9]. 

Examining scientific literature, publications and analyzing 
software tools, we found many network structure properties 
and features, which can be categorized in five groups: 
network metrics, network motifs, topological parameters, 
topological features, and structure qualitative parameters 

(see Fig.1.). These properties and features are not the only 
one, but mostly used in studies and researches. 

 

3.1 Topological parameters 
 

In this paragraph we will describe such topological 
parameters as degree, degree distribution, paths, path 
length, path distribution, network diameter. The following 
definitions will be used graph node, vertex – a network 
component, graph edge or arc – link or connection. 

Degree of a network component. The degree (or 
connectivity [3, 21]) of an undirected network element or 
node, ki, is the number of edges (links) that it has with other 
elements that is incident with i:  

 ∑=
n

j
iji kk  (1) 

A degree is also a feature that distinguishes hubs (highly 
connected nodes) from leaves or orphans (weakly or non-
connected nodes) in the network [31]. In protein interaction 
and genetic interaction networks, for example, the degree 
of a hub (highly connected component) is often its 
importance and essentiality for cell function [28], process 
or whole system. 

For example, Han et al. [9] and Partil and Nakamura [19] 
defined hubs as nodes with degrees of more than 6 (k≥6).  

Hase et al [11] in their study of Structure of Protein 
Interaction networks (PIN) and their implications on Drug 
design, has analyzed budding yeast and Human PINs to 
identify these topological features. Depending on degree 
value, there are 3 types of node degrees for each PIN: low-
degree, middle-degree and high-degree nodes. In the 
budding yeast PIN: 

� Low-degree nodes are nodes with degree of less 
than 6 (k<6),  

� Middle-degree nodes are nodes with degrees 
from 6 to 38 (6 ≤ k ≤ 38),  

� High-degree nodes are nodes with degrees of 
more than 38 (k>38). 

In the Human PIN they define:  
� Low-degree nodes are nodes with degree of less 

than 6 (k<6).  

� Middle-degree nodes are nodes with degrees 
from 6 to 30 (6 ≤ k ≤ 30).  

� High-degree nodes are nodes with degrees of 
more than 30 (k>30). 

 
The degree of node can be used to examine the network 
structure. By examining the network structure, researcher 
should examine these elements, i.e., nodes by using degree 
of node. If the network has isolated [35] elements (which 
degree is 0), it means that in construction, description or 
creation of network structure have been committed errors. 
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Fig. 1. Biochemical network measures and properties  
 
In-degree and Out-degree distribution. For directed 
networks, such as transcription factor binding networks, 
the degree is separated into ‘in’-degree and ‘out’-degree, 
depending on the directions of interaction between two 
given elements [28]. 

Incoming degree (In-degree). The incoming degree is a 
number of links that point to the network component I 
[21]: 

 ∑=+

n

j
iji kk  (2) 

Outgoing degree (Out-degree). The outgoing degree is a 
number of links that start with network component [21]. 

 ∑=+

n

j
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Average degree. For an undirected network, the average 
degree in an undirected network [3, 5]:

  

 N

L
kK

2
>==<

 (4)
 

,
  
where N – the total number of components  

L – the total number of links 
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Average degree of a network. For an undirected network, 
the average degree of the whole network is the average of 
the degrees of all individual network components [5]:  

  
N

k
K Vi

i∑
∈=

 (5) 

,
  
where ki - the degree of node i 

N - the total number of nodes 

 

Degree distribution. Degree distribution dk is the number 
of nodes with degree k (k=1,2,…n) [5, 21]. In other words, 
degree distribution is the number of neighbors of network 
component i. 

For directed networks the degree distribution is separated 
into in-degree and out-degree distribution. 

 
Fig. 2. Undirected network 

 

Let K be the degree of a network element. Then a 
statistical model for the degree distribution is represented 
by:  

 
N

N
kfkKP k=== )()(   (6) 

,where f(k) is a probability distribution 

Nk – a number of nodes with degree k=1,2…n 

N – the total number of nodes 

 

The distribution of degrees f(k) in undirected network, 
gives the probability that a selected component has degree  
k [3]. In the case of directed networks one needs to 
consider two distributions, P(kin) and P(kout) [4]. 

The distribution of degrees among network components is 
useful for characterizing the topology and scale of a 
network, and often has meaningful biological 
interpretation [28]. In general, degree distribution allows 
to separate different network types or classes.  

 
Fig. 3. Directed network 

The degree distribution of many types of real-life 
networks, such as metabolic, scientific collaboration 
networks [21, 26]: 

 
γ−= kkKP ~)(  (7) 

- this function is called a power law 

,where γ - a constant or the degree exponent
 

 

The smaller the value of γ, the more important the role of 
the hubs is in the network. Whereas for γ>3 the hubs are 
not relevant, for 2>γ>3 there is a hierarchy of hubs, with 
the most connected hub being in contact with a small 
fraction of all nodes and for  γ= 2 a hub-and-spoke 
network emerges, with the largest hub being in contact 
with a large fraction of all nodes [4, 3].  

A power-law degree distribution indicates that a few 
hubs hold together numerous small components or nodes 
[3]. A network with this degree distribution is called scale-
free, indicating that there is a high diversity of node 
degrees and no typical nodes in the network that could be 
used to characterize the remaining nodes [28].  In a scale-
free networks most nodes have only one or two functional 
links, whereas a small number of nodes, the hubs, have 
many links [8]. Nearly all biological networks, including 
regulatory, interactome and metabolic networks are scale-
free [3, 4]. 

 

3.2 Topological parameters and features 
 

In studying the function of pathways, the property of 
interest is often how a given gene or protein is related to 
(or responds to) an up- or downstream signal. Given a 
large data set of interactions, it may be useful in some 
contexts to find the most direct path between two genes, 
proteins, complexes or pathways; for example, the overall 
lengths of such pathways may be related to the immediacy 

or breadth of signal response [28]. 

The Path [35] form n0 to nk, according to the graph 
theory, is the sequence of nodes. 

There can be different types of paths: chain (have all 
different edges), simple chain (have all different nodes), 
closed chain or cycle (starts and ends with the same node). 

The path length l ij is the number of edges in path from 
node i to j.  

The path between two given nodes (see Fig.4.). In case 
of signaling networks, the computation of all paths 
between pair of species helps to recognize all the different 
ways in which a signal can propagate between two nodes, 
e.g. all the different ways by which a certain transcription 
factor (or any other species from the output) can be 
activated or inhibited by signals riving the input layer. 

In metabolic networks, researchers are particularly 
interested in the reactions (edges), because they 
correspond to enzymes that are subject to regulatory 
processes and can be knocked-out in experiments. In 
metabolic pathway analysis, a statistical or combinatorial 
analysis of the participation and co-occurrences of 
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reactions in elementary modes proved to be useful for 
obtaining system-wide properties, such as the detection of 
essential reactions/enzymes or correlated reaction sets 
(enzyme subsets) [13]. 
 
 

 
Fig. 4. Paths between two given nodes 

 
The shortest path between two nodes is a path with the 
minimum number of edges that is necessary to traverse 
from one node to the other. 

In weighted directed graph the shortest path [32] is the 
path between two nodes (source and target nodes, start and 
end nodes) with minimal sum of weights of the edges 
making the path.  

The suboptimal path [32] is constructed by removing all 
edges in all shortest paths one by one and one at a time 
and finding the shortest path.  

Average Path length of a network is the average of the 
shortest path lengths between every node pair [5].  

 )1(
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−
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∈
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 (8)

 

, where dij – the shortest path length between nodes i and j. 
 
Average path length reflects how closely nodes are 
connected within the network and offers a measure of a 
network’s overall navigability [5]. The average shortest 
path also indicates the well-known ‘small-world’ property 

of many real-life networks [28, 5]. 

Shortest path distribution. SP(l) is defined as the 
proportion of shortest paths with a specified length l in a 
network and reflects the diversity of the graph distances 
between two nodes in the network. In most real-life 
networks, there is a relatively short path between any two 
nodes, and the length is in the order of logarithm of the 
network size. This property is known as “small world” 
[31]. 

Diameter of the network is the (longest) distance 
between two most remote nodes [5]: 

 
ij

Vji
dD

∈
=

,
max

 (9) 

, where dij  – the shortest path length between nodes i and j. 

 

In a network, different nodes have different levels of 
connectivity. It is necessary to evaluate which node is the 

most important. Network centrality is a local quantitative 
measure for assessing the position of a node relative to the 
other nodes, and can be used to estimate its importance or 
role in a global network organization. Different 
information sources reveal several centrality measures 
such as degree centrality, closeness centrality, and 
betweenness centrality [5]. Betweenness centrality better 
predicts the essentiality of a node then degree centrality 
[8]  

The closeness of a node is defined as the inverse of the 
average distance from all other nodes. The betweenness is 
one of the standard measures of node centrality, originally 
introduced to quantify the importance of an individual in a 
network [4]. The betweenness bi of a node i, is defined as: 
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, where njk - the number of shortest paths connecting nodes 
j and k, 

njk(i) - the number of shortest paths connecting nodes j and 
k and passing through i. 

 

The concept of betweenness can be extended also to the 
edges. The edge betweenness is defined as the number of 

shortest paths between pairs of nodes that run through that 
edge [4]. 
 

3.3 Network motifs  
 

Identifying topological features in networks is an 
important part of understanding the relationship between 
structure and function of network motifs, e.g. feedback 
loops, feedforward loops (see Fig.5.).  

Structural model characterize and provide information of 
the connectivity (topology) of the interactions involved in 
a biological process or system. 

However, some insights into the dynamic properties can 
nevertheless often be obtained, because fundamental 
properties of the dynamic behavior are often governed by 
the network structure [13]. Feedback and biological 
regulation are two sides of the same coin, reflecting the 
need of the living cell to deal with changing 
environtments, to generate cell to cell heterogeneity and to 
optimize cellular metabolism to a given external condition 
[15]. By using feedback loops a network component 
promotes its own accumulation or activation. For example, 
a protein can activate its own transcription factor or inhibit 
its own proteolysis. It may activate its own activator, or 
somehow remove its own inhibitor. [1] 

According to the graph theory, the feedback loop is a 
directed simple cycle or circuit that is defined as a 
sequence of arcs that starts and ends at the same node 
(vertex) i and visit no node twice.  

Feedback loops may be positive or negative, depending 
upon the parity of the number of negative interactions in 
the loop, and they play key role in controlling the 
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dynamics [24] of a wide range of biological systems. 
Negative feedback loops tend to act within biological 
systems to maintain homeostasis [10] (are essential for 
homeostatic mechanisms (i.e. for adjusting and 
maintaining levels of system variables) [13] and are 
necessary for the existence of periodic behavior [24]. 
Systems involving negative feedback loops tend to settle 
to a steady state, which may be stable or unstable [10]. 
The behavior of a negative feedback loop depends partly 
upon its length. A one element loop generates a single, 
stable, steady state; a two element loop produces a single 
steady state which is approached to and departed from in a 
periodic way; while a loop with three or more elements 
can generate damped or stable oscillations depending upon 
parameter values [10]. Networks with larger number of 
independent negative feedback loops tend to have longer 
limit cycles and thus may exhibit more random or chaotic 
behavior [24]. 

 
Fig. 5. Feedback, feedforward end self- loops 

 

Positive feedback loops are responsible and even required 
for multiple steady state behaivior in dynamical systems. 
In biological systems, multistationarity plays a central role 
in differentiation processes and for epigenetic and switch-
like behavior [13]. Multistationarity is the existence of a 
number of different stable state [10]. 

Self-Loop. Self-loop is an arc connecting a species with 
itself. 

 

3.4 Subnetworks and clusters 
 

It is possible to construct two networks with identical 
topological measures including degree distribution and 
clustering coefficient but different hierarchical structure. 
Therefore, local topological features such as modularity, 
motif, and network clustering are likely to be key concepts 
in understanding cellular mechanisms and biological 
functions in biomolecular networks [5]. 
The functions of biomolecular networks are closely related 
to their topologies and facilitated by characteristic 
topological patterns. Components of cellular networks 
including genes, proteins, and other molecules usually act 
in collaboration to carry out specific biological processes 
and biochemical activities, by forming relatively isolated 
functional units called modules. From the topological 
perspective, a module can be understood as a subnetwork 
that is densely connected within itself but sparsely 

connected with the rest of the network. For example, in 
cellular networks, a module refers to a group of physically 
or functionally connected biomolecules that work together 
to achieve some desired cellular function [5]. But, in the 
network of gene expression data, interaction subnetworks 
is a connected sets of interactions, whose genes show 
particularly high levels of differential expression.  The 
interactions contained in each subnetwork provide 
hypotheses for the regulatory and signaling interactions in 
control of the observed expression changes [5, 23]. 

Cluster. Depending on the type of network, clusters may 
mean different things. For instance, clusters in a protein-
protein interaction network have been shown to be protein 
complexes and parts of pathways. Clusters in a protein 
similarity network represent protein families [5, 23]. In 
gene regulatory networks, the cluster is a group of genes 
that are active at the same time are likely to be involved in 
the same regulatory process [16]. 

Cluster analysis is applied, for example, to microarrays 
data that have been collected over a variety of conditions 
or a series of time points. Its goal is to determine the 
original groupings of the genes. This technique assumes 
that genes that are active at the same time are likely to be 
involved in the same regulatory process. It assumes that 
genes are grouped and within the group the genes would 
produce the same expression profile [16]. 

Clustering coefficient. Clustering coefficients is the ratio 
of the number of existing connection or links between a 
node’s neighbors to the maximum number of possible 
links between them [5, 28, 3, 33]: 

 
)1(

2

−
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, where ni is the number of links between ki neighbors.  
 
While node A have 5 neighbors (C,D, B, E, H), the number 
of links between node A neighbors nA=2 node A degree is 
kA=5, the node A clustering coefficient is: 

5

1
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−⋅

⋅
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Clustering coefficient measures how well the neighbors of 
a node i are locally interconnected [33] and the tendency 

of a network to have highly connected clusters. In large-
scale mass spectrometric networks in yeast, this property 

can be used to identify groups of proteins involved in the 
assembly of the ribosome [28]. 

 
Fig. 6.Clustering coefficient of node A  

Average clustering coefficient is the average of all 
individual clustering coefficients of the nodes in the 
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network. It is the clustering coefficient of a network that 
characterizes the overall tendency of nodes [3, 4] to form 
clusters or groups: 

 N

kk

n

N

C

C Vi ii

i

Vi
i ∑∑

∈∈ −
==

)1(

2

  (12)
 

, where ni – the number of edges existing between the ki 
nodes that are connected to node i, 

ki – the degree of node i. 

 

Watts and Strogatz [34] have shown in their work that the 
clustering coefficient of many real systems networks is 
orders of magnitude larger than the one expected for a 
random network and, therefore, they are far from being 
random [33]. 

In particular, clustering coefficient, degree, the minimum 
path distance between pair of nodes, have attracted the 
attention of the physics community. Watts and Strogats 
have shown that real networks are characterized by a small 
average minimum path distance and a large clustering 
coefficient that together are named as small world effect. 
The topology of real networks is characterized by degree 
correlation and clustering hierarchy [33]. 

Clustering-Coefficient distribution. Cluster coefficient 
distribution C(k) is defined by averaging the clustering 
coefficients of nodes  that have the same degree k [3]. It 
characterizes the diversity of cohesiveness of local 
neighborhoods and the overall tendency of nodes to form 
clusters or groups [5]. For many real networks, the 
exponential degree of the log-linear fit  

  

 C(k) = k–γ   (13) 

holds, which implies a network’s hierarchical character or, 
in other words, is an indication of a network’s hierarchical 
character. This function C(k) is a measure of the network’s 
structure [3] and it captures a network’s generic features 
and therefore can be used to classify various networks. 

The modularity metric is defined as the gap between the 
fraction of arcs within clusters and the expected fraction of 
arcs if the arcs are wired with no structural bias [27]: 
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, where r – the number of clusters, 

eij – the fraction of arcs that leads between nodes (vertices) 
of cluster i and j.  

 

The maximum modularity metric corresponds to the 
partition that comprise as many as within-module links 
and as few as possible inter-module links. 

 

 

3.5 Software tools for structure analysis 
 

Software tools NetworkAnalyzer and Visant analyze 
network structure.  

Cytoscape is a complex network visualization and 
analysis tool supporting a standards (SBML, BIOPAX) 
and customizable network display styles [25]. Cytoscape 
specializes in the representation of interaction networks.  
Automatic layout algorithms help to organize massive 
amounts of interaction data relating to a set of molecules 
[5]. 

NetworkAnalyzer is the versatile Cytoscape plug-in that 
computes a comprehensive list of simple and complex 
topology parameters (single values and distributions) for 
directed and undirected networks using efficient graph 
algorithms. Simple parameters are the number of nodes, 
edges, self-loops, and connected components, the average 
number of neighbors, the network diameter, radius, 
density, centralization, heterogeneity, degree of 
component and clustering coefficient, the number of 
shortest paths, and the characteristic path length. Complex 
parameters are distributions of node degrees, 
neighborhood connectivity’s, neighbors connectivity 
distribution, average clustering coefficients, average 
degree distribution, topological coefficients, shortest path 
lengths, shortest path distribution, average shortest path 
length and shared neighbors of two nodes. Network-
Analyzer displays the distributions as histograms or 
scatters plots and allow export them as chart images in the 
formats JPG/PNG/SVG or as tables in plain text files [2]. 

VisANT is a web-based software framework (Java 
application) for visualizing and analyzing many types of 
networks of biological interactions and associations, as 
well as an especially useful tool for integrating 
information from a wide variety of sources. VisANT 
explicitly allows creation of mixed networks involving 
different types [28], i.e. networks containing both directed 
and undirected links [25]. Networks can also be analyzed 
for topological characteristics to identify larger global 
properties, such as degree (in-degree, out-degree) of a 
component, degree (in-degree, out-degree) distribution, 
average degree distribution, path length, shortest path 
length, clustering coefficient, clustering coefficient 
distribution calculations [25,29], clustering coefficient 
distribution and average clustering coefficient distribution, 
connections finding between a given set of genes/proteins, 
i.e., shortest path between two given components or given 
set of components, feedback loops (cycles), feedforward 
loops and self-loops.  

VisANT provides: 

(1) visualization, mining, analysis and modeling of the 
biological networks, which extend the application of 
GO [30]. 

(2) supporting exploratory pathway analysis using 
metagraphs, which includes multi-scale visualization 
of multiple pathways, editing and annotating 
pathways using a KEGG compatible visual notation 
and visualization of expression data in the context of 
pathways [29]. 
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(3) the statistical and analytical tools needed for 
extracting topological properties of the user-defined 
networks. 

 

4 CONCLUSIONS 
 

The structural or topological analysis of biochemical 
networks contributes to a deeper understanding of 
network-wide interdependencies, causal relationships, and 
basic functional capabilities. The structural analysis is not 
based on quantitative and dynamic properties and can thus 
only provide qualitative answers. 
Networks have “emergent” properties that are distinct 
from those of their individual components. Emergent 
properties are non-linear, aggregated and combinatory 
effects generated by the interaction of the components of 
the network. 
The network structure properties and features can be 
categorized in the following groups: network metrics, 
network motifs, topological parameters(a Cytoscape plug-
in) and VisANT are the most powerful tools for 
biochemical network structure analysis. 
 
5 REFERENCES 
 

[1] Alberghina L., Westerhoff H. (Eds.) (2005) Systems Biology. 
Definitions and Perspectives.Springer Verlag Berlin Weidelberg, 2005 
[2] Assenov Y., Ramirez F., Schelhorn S.-H., Lengauer T., Albrecht M. 
(2008) Computing topological parameters of biological networks. 
Bioinformatics Applications Note, Vol.24 no. 2 2008, pp.: 282-284 
[3] Barabasi A.L., Oltvai Z.N. (2004) Network biology: understanding 
the cell's functional organization. Nat Rev Genet 5: 101–113  
[4] Boccaletti, S., Latora, V., Moreno, Y.,Chavez, M., Hwang, D.-
U.(2006) Complex networks: Structure and dynamics. Physics Reports 
424: 175-308. 
[5] –Chen L., Wang R.-S., Zhang X.-S. (2009) Biomolecular networks: 
Methods and Applications in System Biology. John Wikey & Sons, Inc., 
Hoboken, New Jersey, 2009 ISBN 978-0-470-24373-2 
[6] Cline M.S., Smoot M., Cerami E., Kuchinsky A., Landys N., 
Workman C., Christmas R., Avila-Campilo I., Creech M., Gross B., 
Hanspers K., Isserlin R., Kelley R., Killcoyne S., Lotia S., Maere S., 
Morris J., Ono K., Pavlovic V., Pico A.R., Vailaya A., Wang PL., Adler 
A., Conklin B.R., Hood L, Kuiper M., Sander C., Schmulevich I., 
Schwikowski B., J Warner G., Ideker T., D Bader G. (2007) Integration 
of biological networks and gene expression data using Cytoscape. Nature 
Protocols 2, 2007, Page(s): 2366 – 2382, doi:10.1038/nprot.2007.324 
[7] GrundspeĦėis J. (2006) Sistēmu teorija un vadība. ESF projekta 
ietvaros izveidots metodiskais materiāls. 
[8] Han J.-D. J. (2008) Understanding biological functions through 
molecular networks. Cell Research (2008) 18:224-237 
[9] Han J.D., Bertin N., Hao T., Goldberg D.S., Berriz G.F., Zhang L.V., 
Dupuy D., Walhout A. J., Cusick M.E., Roth F.P., and Vidal M. 2004. 
Evidence for dynamically organized modularity in the yeast protein–
protein interaction network. Nature 430: 88–93.  
[10] Hallinan J.S., Jackway P.T. Network Motifs, Feedback Loops and 
The Dynamic of Genetic Regulatory Networks. 
[11] Hase T., Tanaka H., Suzuki Y., Nakagawa S., Kitano H. (2009) 
Structure of Protein Interaction Networks and Their Implications on Drug 
Design. PLoS   Computational Biology, Volume 5, Issue 10, October 
2009 
[12] Herrgard M., Lee B.S., Portnoy V., Palsson B.O. (2006) Integrated 
analyses of regulatory and metabolic networks reveals  
[13] Klamt S., Saez-Rodriguez J., A Lindquist J., Simeoni L., D Gilles E. 
(2006) A methodology for the structural and functional analysis of 

signaling and regulatory networks. BMC Bioinformatics2006, 7:56 
doi:10.1186/1471-2105-7-56 
[14] Kholodenko B., Bruggeman F., Sauro H. (2005) Mechanistic and 
modular approaches to modeling and inference of cellular regulatory 
networks, Systems Biology: Definitions and Perspectives. Springer, 2005 
[15] Krishna S., Semsey S., Sneppen K. (2007) Combinatorics of 
feedback in cellular uptake and metabolism of small molecules. PNAS, 
Vol. 104, No.52, December 26, 2007, 20815-20819 
[16] - Myers C. J. (2010) Engineering Genetics Circuits. Chapman & 
HALL/CRC Mathematical and computational Biology Series. 2010. 
Taylor and Francis Group, LLC. Page(s): 278. 
[17] Newman, M.E.J. (2003) The structure and function of complex 
networks. SIAM Review 45:167-256. Press. August 25, 2007. [Available 
at: http://bioinformatics.oxfordjournals.org/cgi/reprint/btm401v1.pdf] 
[18] Nishio Y., Usuda Y., Matsui K., Kurata H. (2008) Computer-aided 
rational design of the phosphotransferase system for enhanced glucose 
uptake in Escherichia coli. Molecular Systems Biology 4: Art.Nr. 160 
[19] Patil A., Nakamura H. (2006) Disordered domains and high surface 
charge confer hubs with the ability to interact with multiple proteins in 
interaction networks. FEBS Lett 580: 2041–2045 
[20] Paxson R., Zannella K.. System biology: Studying the world’s most 
complex dynamic systems// Journal TheMathWorksNews&Notes - June 
(2007), pp.4-7 
[21] Robins G, Pattison P., Koskinen J. (2008) Technical report. Network 
degree distribution. University of Melbourne, 2008 
[22] Rubina T., Brusbardis V. (2009) Applications of biochemical 
networks  discovering control mechanisms in systems biology. 
Proceedings of the Annuals Students International Scientific Conference 
“YOUTH IN SCIENCE AND PROFESSIONAL PRACTICE”, 2009 
novel regulatory mechanisms in Saccharomyces cerevisiae. Genome 
research, 2006 
[23] - Shannon P., Markiel A., Ozier O., Baliga NS., Wang JT., Ramage 
D., Amin N., Schwikowski B., Ideker T. (2003) Cytoscape: a software 
environment for integrated models of biomolecular interaction networks. 
Genome Research 2003 Nov; 13(11), Page(s): 2498-504 
[24] Sontag E., Vilz-Cuba A., Laubenbacher R., Jarrah A.S. (2008) The 
Effect of Negative Feedbach Loops on the Dynamics of Boolean 
Networks. Biophysical Journal, Volume 95, July 2008, 528-526 
[25] Suderman M., Hallett M. (2007) Tools for visually exploring 
biological networks. 2006. Published by Oxford University  
[26] Zhang J., Shakhnovich E.-I. (2008) Sensitivity-dependent model of 
protein-protein interaction networks. Phys. Biol. 5 036011 (6pp.)  
[27] Zhao J., Ding G.-H., Tai L., Yu H., Yu Z.-H., Luo J.-H., Cao Z.-W., 
Li Y.-X. (2007) Modular co-evolution of metabolic networks. BMC 
Bioinformatics 2007, 8:311 
[28] - Zhenjun Hu, Joe Mellor, Jie Wu, Takuji Yamada, Dustin 
Holloway, Charles DeLisi. (2005) VisANT: data-integrating visual 
framework for biological networks and modules. Nucleic Acids Research 
2005, Volume 33(Web Server Issue):W352-W357 
[29] - Zhenjun Hu, David M. Ng., Takuji Yamada, Chunnuan Chen, 
Shuichi Kawashima, Joe Mellor, Bolan Linghu, Minoru Kanehisa, 
Joshua M. Stuart, Charles DeLisi. (2007) VisANT 3.0: new modules for 
pathway visualization, editing, prediction and construction. Nucleic 
Acids Research, 2007. 
[30] - Zhenjun Hu, Jui-Hung Hung, Yan Wang, Yi-Chien Chang, Chia-
Ling Huang, Matt Huyck, Charles DeLisi. (2009) VisANT 3.5multi-scale 
network visualization, analysis and inference based on the gene 
onthology. Nucleic Acids Research, 2009, Vol. 37, Web Server issue 
W115-W121 
[31] –Zinovyev A., Viara E., Calzone L., Emmanuel Barillot. (2008) 
BiNoM: a Cytoscape plugin for manipulating and analyzing biological 
networks. Bioninformatics applications note. Vol. 24 no. 6 2008, Page(s): 
876-877 
[32] Zinovyev A., Calzone L. Binom Manual Version 1.0. InstitutCurie. 
[33] Vazquez A. (2003) Growing network with local rules: preferential 
attachment, clustering hierarchy, and degree correlations. Phys Rev E 
Stat Nonlin Soft Matter Phys 67: 056104 
[34] Watts D.J., Strogatz S.H. (1998) Collective dynamics of ‘small-
world’ networks. Nature, Vol. 393, No. 6684. (04 June 1998), pp. 440-
442. 
[35] Wilson R.J. (1972) Introduction to Graph Theory. Oliver and Boyd. 
Edinburgh, 1972

 

 

 

 


