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ABSTRACT

In the cell, tissue, organ and organism under ffeconditions operate metabolic, protein inteécactgene or genetic regulatory and signaling
networks that describe biochemical reactions, keawhal or biophysical process. The biochemical wete can present the relationship between
genes and gene products, proteins, metabolitegtan@he exploration of these networks is the leesk in systems biology in the last few years
and helps to understand some cellular processtifunscor properties of biological system better.

We provide researchers and coterie informationeiwaork structure analysis, existing and used tagiol features with the following goals: 1)
to accumulate the existing knowledge about the adtstructure analysis; 2) to provide a list ofatimical features and characterize the most of
them, mentioning its biological sense; 3) to previlde information of the existing software toolsttoe structure analysis.

In this research paper, we focus on the structfirlne networks, the topological parameters sucla aegree distribution, a path length, a
clustering coefficient, motifs such as feedbaclpka feedforward, self-loops and the other feature

1 INTRODUCTION

The goal of systems biology is to understand living
organisms at the systems level, combining quaiviat
information on individual components in order to
understand the emergent behaviors that result [14].
According to the systems theory, a system is ddfamethe
set of objects with relations between objects dmeke
properties. The living organisms can be consideasd
biological systems. In most cases, the biologigalteins
are very complex. System biologists build a systeve!
understanding of how the biological world works awtve
problems by understanding systems and then apptiiaty
knowledge to control them [20].

During the last several years, the biological redea
produces increasing volumes of data describing mpeno
sequence of biological organisms, cellular compts)en
their interactions, and states of biochemical netsdor
model organisms [12]. This available informationoat
biological entities and their interactions enable to
consider different organisms as biological systemhich
control the genetic information [22].

To understand biology at the system level, we must
examine the structure and dynamics of cellular and
organismal function (Kitano) [1]. According to tgstems
theory, a structure is defined as the set of elésnand
relations (links) between them that define funcdioof
system and distribution of the purposes [7]. Analgzthe
structure, usually the researchers are interestedhé
properties of the system, which remain invariablesaf long
period of time or functioning on the system. Living
organisms are subjected to the process of geneiiations

dependant on environmental conditions__ (external
perturbationy it can be necessary to detect invariable and
varyable system properties. It can be done withptirpose

to compare several systems of one type, to datéaoence

of the certain and separate factors on the system.

In this research paper, we focused on the struotdire
biochemical networks and their exploration.

2 EXPLORATION OF BIOCHEMICAL
NETWORKS

The goals of systems biology are to understand the
mechanisms of how biochemical networks generate
particular cellular functions in response to enwirental
stresses or genetic changes [18]. Structural ocoldgjcal
analysis of cellular interaction networks contrimitto a
deeper understanding of network-wide interdeperidenc
causal relationship, and basic functional capéabslit
Structural analysis, towards a functional analysisthe
structure is not based on quantitative and dynamic
properties and can thus only provide qualitativevaers
[13].

It is important and necessary to explore, for examp
protein interaction or gene regulatory networksijlevthey
play a key role in disease understanding and atedrag
targets [11] finding. Structural or topologicalatpmeter-
free) and dynamic models are used to explore theanks.

It is necessary to notice that the basis of eactieiis the
structure. In this paper, we focused on a struttmadel.



In structural models networks are representedriectéd or
undirected graph form [13, 28, 29, 31] and mixedpips
[28], that consist of nodes and edges. Nodes reptes
genes, gene productproteins, chemical compounds or
small molecules. Graph links (edges in undirectegly or
arcs in directed graph) represent functional refetips [8]
i.e., varioustypes of interactions or associations between
the pair of nodes, e.g. metabolic reactions or syegene
modification,  protein/protein-nucleotide  interacti®
protein modification, regulatory relationships sucs
transcriptional and translational regulation, sigma
pathways etc. [25, 29]. Connections can be direced
undirected dependent on graph type; they can hiaysiqal
meaning, denote general associations; they caresepr
shared characteristics [28] between components.edlod
depend on the number of connections and the tygeaph
can be hubs (highly connected nodes) [30] and me&
[28].

The choice of the network representation is oftetated
by a research issue. Directed networks are suitahlen
the interactions between two components have a- well
defined direction, for example, the direction oftaimlic
flow from substrates to products, or the informatftow
from transcription factors to the genes that thegutate.
For example, Zhao et al in their work [27] repréddomo
sapiens metabolic network by a directed graph, kwhic
nodes correspond to metabolites and the arcs eatdions
between these metabolites, in which irreversiblctiens
are represented as directed arcs while reversitde as bi-
directed arcs (see Fig.3.). Transcriptitactor binding
networks [28] can be represented too as directedonks.

Undirected networks, such as protein interactiofvoeks,
represent a mutual relationship: if protein A bintis
protein B, then protein B binds to protein A. Thype of
representation also often applies to predictionslenby
high-throughput proteomic or genomic analysis,nafirect
links based on shared genes or protein componetisebn
pathways and complexes [28].

3 FEATURES AND PROPERTIES OF NETWORK
STRUCTURE

Networks have “emergent” properties that are distfrom
those of their individual components. Emergent props
are non-linear, aggregated and combinatory effects
generated by the interaction of the components hef t
network. For example, properties such as topology,
information flow and the stable state of a netwcak only

be detected at the network level, not by examirtimg
individual components such as genes or proteinge Th
structural and dynamic features of genetic networks
ultimately contribute to biological functions, rafiness
and evolvability of the networks [9].

Examining scientific literature, publications andabyzing
software tools, we found many network structurepprties
and features, which can be categorized in five ggou
network metrics, network motifs, topological paraens,
topological features, and structure qualitativeapaaters

(see Fig.1.). These properties and features ar¢headnly
one, but mostly used in studies and researches.

3.1 Topological parameters

In this paragraph we will describe such topological
parameters as degree, degree distribution, path#) p
length, path distribution, network diameter. Théolwing
definitions will be used graph node, vertex — awoek
component, graph edge or arc — link or connection.

Degree of a network component. The degree (or
connectivity [3, 21]) of an undirected network ebarh or
node,k;, is the number of edges (linkbjt it has with other
elements that is incident with

KZEM

A degree is also a featutieat distinguishes hubs (highly
connected nodes) from leavass orphans (weakly or non-
connected nodes) in the network [31]. In proteteriaction
and genetic interaction networks, for example, degree
of a hub (highly connected component) is often its
importance and essentiality for cell function [2Btpcess
or whole system.
For example, Han et al. [9] and Partil and Nakanjaed
defined hubs as nodes with degrees of more th&a6).
Hase et al [11] in their study of Structure of Rt
Interaction networks (PIN) and their implications Drug
design, has analyzed budding yeast and Human RINs
identify these topological features. Depending @yrde
value, there are 3 types of node degrees for el¢hidwv-
degree, middle-degree and high-degree nodas.the
budding yeast PIN:

v" Low-degree nodes are nodes with degree of less
than 6 k<6),
Middle-degree nodes are nodes with degrees
from 6 to 38 6 <k <38),
High-degree nodes are nodes with degrees of
more than 38k>38).

IntheHuman PIN they define:

v" Low-degree nodes are nodes with degree of less
than 6 k<6).
Middle-degree nodes are nodes with degrees
from 6 to 30 6 <k <30).

High-degree nodes are nodes with degrees of
more than 30k>30).
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The degree of node can be used to examine the rietwo
structure. By examining the network structure, aesleer
should examine these elements, i.e., nodes by ukgee

of node. If the network has isolated [35] elemdmtkich
degree is 0), it means that in construction, dpson or
creation of network structure have been committecre.
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Fig. 1. Biochemical network measures and properties

In-degree and Out-degree distribution. For directed

networks, such as transcriptidéactor binding networks,

the degree is separated into ‘in’-degesel ‘out’-degree,

depending on the directions ofteraction between two
given elements [28].

Incoming degree (In-degree). The incoming degree is a
number of links that point to the network componént
[21]:

k+i = Z kij (2)
j

Outgoing degree (Out-degree). The outgoing degree is a
number of links that start with network componezit][

ki, = Z K )
i

Average degree. For an undirected networkhe average
degree in an undirected network [3, 5]:

K:<k>:&
N

4)
, wWhereN — the total number of components
L — the total number of links



Average degree of a network. For an undirected network,
the average degree of the whole network is theagecof
the degrees of all individual network componentis [5

2k
K — iev
N (5)
, wherek; - the degree of node
N - the total number of nodes

Degree distribution. Degree distributioml, is the number
of nodes with degrele (k=1,2,...n) [5, 21]. In other words,
degree distribution is the number of neighbors etivork
component.

For directed networks the degree distribution jsasated
into in-degr ee andout-degree distribution.

®
Ked—c
O—n—¢

Fig. 2. Undirected network

ke=4
ke=3

Let K be the degree of a network element. Then a
statistical model for the degree distribution ipresented
by:

HK=m:Hm=$f ®)

.wheref(k) is a probability distribution
N¢ — a number of nodes with degieel,2...n
N — the total number of nodes

The distribution of degreefk) in undirected network,
gives the probability that a selected componentdeggee

k [3]. In the case of directed networks one needs to
consider two distribution®(ki,) andP (ko) [4].

The distribution of degrees among network compaent
useful for characterizing the topology and scale aof
network, and often has meaningful biological
interpretation [28]. In general, degree distribatiallows

to separate different network types or classes.

&
Kain=2
Knou=3

Fig. 3. Directed network

The degree distribution of many types of real-life
networks, such as metabolic, scientific collabormati
networks [21, 26]:

P(K=Kk)~k™ @)
- this function is called a power law
,wherey - a constant or the degree exponent

The smaller the value af the more important the role of
the hubs is in the network. Whereas foB the hubs are
not relevant, for 23 there is a hierarchy of hubs, with
the most connected hub being in contact with a Ismal
fraction of all nodes and fory= 2 a hub-and-spoke
network emerges, with the largest hub being in acint
with a large fraction of all nodes [4, 3].

A power-law degree distribution indicates that a few
hubs hold together numerous small components oesiod
[3]. A network with this degree distribution is kel scale-
free, indicating that there is a high diversity nbde
degrees and no typical nodes in the network thaldcoe
used to characterize the remaining nodes [28]a $cale-
free networks most nodes have only one or two fanat
links, whereas a small number of nodes, the hubasge h
many links [8]. Nearly all biological networks, inding
regulatory, interactome and metabolic networkssaade-
free [3, 4].

3.2 Topological parametersand features

In studying the function of pathways, the propedfy
interestis often how a given gene or protein is related to
(or respondgo) an up- or downstream signal. Given a
large data set of interactions,may be useful in some
contexts to find the most direct pdibtween two genes,
proteins, complexes or pathways; for examghle,overall
lengths of such pathways may be related to the g

or breadth of signal response [28].

The Path [35] form ny to n,, according to the graph
theory, is the sequence of nodes.

There can be different types of paths: chain (halle
different edges), simple chain (have all differeotdes),
closed chain or cycle (starts and ends with theesamale).

The path length |;; is the number of edges in path from
nodei toj.

The path between two given nodes (see Fig.4.). In case
of signaling networks, the computation of all paths
between pair of species helps to recognize altiifierent
ways in which a signal can propagate between twizs0
e.g. all the different ways by which a certain seniption
factor (or any other species from the output) can b
activated or inhibited by signals riving the inpayer.

In metabolic networks, researchers are particularly
interested in the reactions (edges), because they
correspond to enzymes that are subject to regylator
processes and can be knocked-out in experiments. In
metabolic pathway analysis, a statistical or coratuirial

analysis of the participation and co-occurrences of
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reactions in elementary modes proved to be useful f
obtaining system-wide properties, such as the teteof
essential reactions/enzymes or correlated reactiets
(enzyme subsets) [13].

Paths from A to B:

° IAB(l):4 |AB(2):2

Shortest path from A to B:

dase2

Fig. 4. Paths between two given nodes

The shortest path between two nodes is a path with the
minimum number of edges that is necessary to tsaver
from one node to the other.

In weighted directed graph the shortest path [32] is the
path between two nodes (source and target nodesastd
end nodes) with minimal sum of weights of the edges
making the path.

The suboptimal path [32] is constructed by removing all
edges in all shortest paths one by one and onetiatea
and finding the shortest path.

Average Path length of a network is the average of the
shortest path lengths between every node pair [5].
234
ijev
— _I<J
L= N(N-1 (8)
, Whered; — the shortest path length between nadesd].

Average path length reflects how closely nodes are
connected within the network and offers a meastira o
network’s overall navigability [5]. The average sfest
pathalso indicates the well-known ‘small-world’ propert

of many real-life networks [28, 5].

Shortest path distribution. SP(l) is defined as the
proportion of shortest paths with a specified lergin a
network and reflects the diversity of the graphtatises
between two nodes in the network. In most real-life
networks, there is a relatively short path betwaen two
nodes, and the length is in the order of logarithinthe
network size. This property is known as “small wlorl
[31].

Diameter of the network is the (longest) distance
between two most remote nodes [5]:

D = maxd;
i,jev (9)

, Whered; — the shortest path length between nodedj.

In a network, different nodes have different levels
connectivity. It is necessary to evaluate whichenadthe

most important. Network centrality is a local qutative
measure for assessing the position of a nodevelaithe
other nodes, and can be used to estimate its iamm@tor
role in a global network organization. Different
information sources reveal several centrality messu
such as degree centrality, closeness centralityd an
betweenness centrality [5]. Betweenness centrhaktyer
predicts the essentiality of a node then degre¢ralén

(8]

The closeness of a node is defined as the inverse of the
average distance from all other nodes. bh&®veenness is
one of the standard measures of node centralityinatly
introduced to quantify the importance of an induatlin a
network [4]. The betweennebsof a nodd, is defined as:

bi— z Ny (1)
j.keN Njk
JE2

(10)

, wheren, - the number of shortest paths connecting nodes
j andk,

ni(i) - the number of shortest paths connecting npdesl
k and passing through

The concept of betweenness can be extended algw to
edges. Thedge betweennessis defined as the number of

shortest paths between pairs of nodes that runighrthat
edge[4].

3.3 Network motifs

Identifying topological features innetworks is an
important part of understanding the relationdbgiween
structure and function of network motifs, e.g. feack
loops, feedforward loops (see Fig.5.).

Structural model characterize and provide infororatbf
the connectivity (topology) of the interactions ahwed in
a biological process or system.

However, some insights into the dynamic propertias
nevertheless often be obtained, because fundamental
properties of the dynamic behavior are often goseérny
the network structure [13]. Feedback and biological
regulation are two sides of the same coin, refigcthe
need of the living cell to deal with changing
environtments, to generate cell to cell heteroggragid to
optimize cellular metabolism to a given externatdition
[15]. By using feedback loops a network component
promotes its own accumulation or activation. Faaregle,

a protein can activate its own transcription factomhibit

its own proteolysis. It may activate its own actira or
somehow remove its own inhibitor. [1]

According to the graph theory, tHeedback loop is a
directed simple cycle or circuit that is defined as
sequence of arcs that starts and ends at the sades n
(vertex)i and visit no node twice.

Feedback loops may be positive or negative, depgndi
upon the parity of the number of negative inteadiin
the loop, and they play key role in controlling the
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dynamics [24] of a wide range of biological systems
Negative feedback loops tend to act within biolagic
systems to maintain homeostasis [10] (are essefaral
homeostatic mechanisms (i.e. for adjusting and
maintaining levels of system variables) [13] and ar
necessary for the existence of periodic behavia}.|[2
Systems involving negative feedback loops tendettles
to a steady state, which may be stable or unstfddk
The behavior of a negative feedback loop dependsypa
upon its length. A one element loop generates glesin
stable, steady state; a two element loop producssgie
steady state which is approached to and depaedifr a
periodic way; while a loop with three or more elense
can generate damped or stable oscillations depgngion
parameter values [10]. Networks with larger numbér
independent negative feedback loops tend to hawgelo
limit cycles and thus may exhibit more random oaatic
behavior [24].

Feedback loops:

FB(1) A>C>D>G>A

FB(2) ADE>G>A

Feedforward loop:

FF(1) D>G->B
Self-loop:

Fig. 5. Feedback, feedforward end self- loops

Positive feedback loops are responsible and even required
for multiple steady state behaivior in dynamicasteyns.

In biological systems, multistationarity plays atral role

in differentiation processes and for epigenetic swich-
like behavior [13]. Multistationarity is the existee of a
number of different stable state [10].

Self-Loop. Self-loop is an arc connecting a species with
itself.

3.4  Subnetworksand clusters

It is possible to construct two networks with ideat
topological measures including degree distributemd
clustering coefficient but different hierarchicdtugture.
Therefore, local topological features such as manityl
motif, and network clustering are likely to be kmncepts
in understanding cellular mechanisms and biological
functions in biomolecular networks [5].

The functions of biomolecular networks are closelated
to their topologies and facilitated by charactéist
topological patterns. Components of cellular neksor
including genes, proteins, and other molecules|lysaeat

in collaboration to carry out specific biologicalopesses
and biochemical activities, by forming relativeolated
functional units called modules. From the topolagic
perspective, a module can be understood as a sutrket
that is densely connected within itself but sparsel

connected with the rest of the network. For examisle
cellular networks, a module refers to a group ofsitally

or functionally connected biomolecules that worgether

to achieve some desired cellular function [5]. Batthe
network of gene expression data, interaction swiorids

is a connected sets of interactions, whose genes show
particularly high levels of differential expressiormrhe
interactions contained in each subnetwork provide
hypotheses for the regulatory and signaling intévas in
control of the observed expression changes [5, 23].

Cluster. Depending on the type of network, clusters may
mean different things. For instance, clusters jratein-
protein interaction network have been shown to fieéen
complexes and parts of pathways. Clusters in aejprot
similarity network represent protein families [53]21In
gene regulatory networks, the cluster is a grougesfes
that are active at the same time are likely torlvelived in
the same regulatory process [16].

Cluster analysis is applied, for example, to microarrays
data that have been collected over a variety oflitioms
or a series of time points. Its goal is to deteemthe
original groupings of the genes. This techniqueuaEs
that genes that are active at the same time aly lik be
involved in the same regulatory process. It assuthat
genes are grouped and within the group the genesdwo
produce the same expression profile [16].

Clustering coefficient. Clustering coefficients is the ratio
of the number of existing connection or links bedwea
node’s neighbors to the maximum number of possible
links between them [5, 28, 3, 33]:

Ci = i (11$)
ki (ki —1)

, Wheren; is the number of links betwe&nneighbors.

While nodeA have 5 neighbor< (D, B, E, H, the number
of links between nodA neighbors,=2 node A degree is
ka=5, the nodéA clustering coefficient is:

22 1

"5.(5-1) 5

Clustering coefficient measures how well the neagklof
a node i are locally interconnected [33] and thelémcy
of a network to have highly connected clusterslahge-
scale mass spectrometric networks in yeast, tlupegoty
can be used to identify groups of proteins involuedhe
assemblpf the ribosome [28].

Fig. 6.Clustering coefficient of node A

Average clustering coefficient is the average of all
individual clustering coefficients of the nodes the

A
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network. It is the clustering coefficient of a netk that
characterizes the overall tendency of nodes [3p 4prm
clusters or groups:

2n,
C. e B
C_; | _gki(ki -9
N N

(12)
, Wheren; — the number of edges existing betweenkhe
nodes that are connected to nade

k;— the degree of node

Watts and Strogatz [34] have shown in their wokt tine
clustering coefficient of many real systems netwgoik
orders of magnitude larger than the one expectedafo
random network and, therefore, they are far frorimdpe
random [33].

In particular, clustering coefficient, degree, théimum
path distance between pair of nodes, have attratied
attention of the physics community. Watts and Siteg
have shown that real networks are characterizeal dyall
average minimum path distance and a large clusgterin
coefficient that together are namedsasall world effect
The topology of real networks is characterized byrde
correlation and clustering hierarchy [33].

Clustering-Coefficient distribution. Cluster coefficient
distribution C(k) is defined by averaging the clustering
coefficients of nodes that have the same delgri&g. It
characterizes the diversity of cohesiveness of Iloca
neighborhoods and the overall tendency of nodderto
clusters or groups [5]. For many real networks, the
exponential degree of the log-lindiar

C(k) =k (13)
holds, which implies a network’s hierarchical cleiea or,
in other words, is an indication of a network’sraiehical
character. This functio@(k) is a measure of the network’s
structure [3] and it captures a network’s geneeiatdires
and therefore can be used to classify various nmésvo

Themodularity metric is defined as the gap between the
fraction of arcs within clusters and the expectedtfon of
arcs if the arcs are wired with no structural H2§:

2
r
M =D l6i-| 28
i=1 i

, wherer — the number of clusters,

g; — the fraction of arcs that leads between nodetgiges)
of clusteri and.

(14)

The maximum modularity metric corresponds to the
partition that comprise as many as within-moduledi
and as few as possible inter-module links.

35 Softwaretoolsfor structureanalysis

Software tools NetworkAnalyzer and Visant analyze
network structure.

Cytoscape is a complex network visualization and
analysis tool supporting a standards (SBML, BIOPAX)
and customizable network display styles [25]. Cotqe
specializes in the representation of interactiotwaeks.
Automatic layout algorithms help to organize massiv
amounts of interaction data relating to a set oferdes

[5]-

NetworkAnalyzer is the versatile Cytoscape plug-in that
computes a comprehensive list of simple and complex
topology parameters (single values and distribgficior
directed and undirected networks using efficienapgr
algorithms. Simple parameters are the number oksod
edges, self-loops, and connected components, #rags
number of neighbors, the network diameter, radius,
density, centralization, heterogeneity, degree of
component and clustering coefficient, the number of
shortest paths, and the characteristic path lel@gmplex

parameters are distributions of node degrees,
neighborhood connectivity’s, neighbors connectivity
distribution, average clustering coefficients, ager

degree distribution, topological coefficients, ghet path
lengths, shortest path distribution, average shonpath
length and shared neighbors of two nodes. Network-
Analyzer displays the distributions as histograms o
scatters plots and allow export them as chart imagé¢he
formats JPG/PNG/SVG or as tables in plain texsfj#.

VisANT is a web-based software framework (Java
application) for visualizing andnalyzing many types of
networks of biological interactionand associations, as
well as an especially useful tool for integrating
information from a wide variety of sources. ViSANT
explicitly allows creation of mixed networks invahg
different types [28], i.e. networks containing badlinected
and undirected links [25]. Networks can also belyaeal
for topological characteristics to identify larggtobal
properties, such as degree (in-degree, out-degte)
component, degree (in-degree, out-degree) distoibut
average degree distribution, path length, shortegh
length, clustering coefficient, clustering coeféiot
distribution calculations [25,29], clustering caeint
distribution and average clustering coefficientrifigition,
connections finding between a given set of genes#prs,
i.e., shortest path between two given componentgven
set of components, feedback loops (cycles), feacfat
loops and self-loops.

VisANT provides:

(1) visualization, mining, analysis and modeling of the
biological networks, which extend the applicatidn o
GO [30].

(2) supporting exploratory pathway analysis using
metagraphs, which includes multi-scale visualizatio
of multiple pathways, editing and annotating
pathways using a KEGG compatible visual notation
and visualization of expression data in the contéxt
pathways [29].
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(3) the statistical and analytical tools needed for
extractingtopological properties of the user-defined
networks.

4 CONCLUSIONS

The structural or topological analysis of biocheathic
networks contributes to a deeper understanding of
network-wide interdependencies, causal relatiorsstapd
basic functional capabilities. The structural asalyis not
based on quantitative and dynamic properties andhuss
only provide qualitative answers.

Networks have “emergent” properties that are distin
from those of their individual components. Emergent
properties are non-linear, aggregated and combinato
effects generated by the interaction of the comptmef
the network.

The network structure properties and features can b
categorized in the following groups: network medric
network motifs, topological parameters(a Cytoscplog-

in) and VisANT are the most powerful tools for
biochemical network structure analysis.
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