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Abstract: Bioprocess requirements for monitoring, control and identification of process states are increasing to 

optimize performance and time to avoid disruption that may affect the success of the yeast Saccharomyces 

cerevisiae fermentation process. Continuous estimation of bioprocess state during fermentation requires to use 

accurate mathematical model and parameters that can describe the actual state of the yeast growth during the 

fermentation. 

Application of functional state modelling approach for the mathematical modelling of batch yeast 

Saccharomyces cerevisiae CEN.PK haploid fermentations is presented. Main advantage of the functional state 

modelling approach against global model with complex structure is that the parameters of each local model can 

be estimated separately from the other local models parameters. Functional modelling approach also makes it 

easier to perform model simulation and parameter estimation as compared to the complex global model. 

Obtained experimental data from yeast batch fermentations shows sufficiently good match with the curves 

simulated using functional state model. 
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Introduction 

The yeast Saccharomyces cerevisiae is one of the most relevant microorganisms in the biotechnology industry. It 

has been used intensively for the production of single cell protein (SCP) for human and animal consumption, and 

ethanol for alcoholic drink and transport fuel usage from fermentable sugar. In view of increasing importance of 

ethanol, as an alternative source for chemicals and liquid fuel, a great deal of research interest in ethanol 

fermentation has been generated (Hunag et al., 2011; Kumoro et al., 2009). 

It is valuable to accurately monitor and control biotechnological process (Mednis et al., 2010) to produce the 

target product (ethanol) for the highest quality and more profitable. For more accurate control it is useful to 

apply a metabolic model of the yeast in the bioprocess control algorithm  that can provide the essential 

information about ongoing intracellular activities of the bioprocess (Viļums, 2011).  

Continuous evaluation of process parameters during the cultivation is a need for a fermentation mathematical 

model that can simulate the process. The progress of the process can be adequately predicted in a timely manner. 

Bioreactor control program using the developed model on the basis can handle actuators to stabilize and 

maintain the progress of the process in the optimal mode. Models cannot only explain and reproduce observed 

behavior but also predict the evolution of the process. Models are useful for the estimation of parameters and 

variables. If the anomaly is detected in the functioning process then control system based on model can act on 

the process to steer and control its variables to the suitable state. 

Mostly for bioprocess modeling are used global process models (Nagy, 2007; Renard et al., 2006). The main 

disadvantage of such approach is the complex model structure and the large number of model parameters, which 

complicates the model simulation and parameter estimation. The functional state modeling approach is 

alternative concept of process modeling. In functional state the process is described by local model, which is 

valid in actual state only. A set of local model together with function state equations can be used to describe, 

monitor and control the yeast growth process. Several authors have already showed benefits of this approach for 

more accurate and detailed process modeling (Hristozov et al., 2005; Pencheva and Hristozov, 2005; Pencheva et 

al.,, 2004; Roeva et al., 2007; Roeva et al., 2006). 

This article aims to demonstrate the functional modeling approach benefits of yeast batch fermentation process 

modeling to use it as base for yeast growth state estimation. This approach in case of good model and 

experimental data coincide can be used not only for process predictions but also for fermenter control to stabilize 

process early enough.   

Matherials and methods 

1. Batch fermentation 

The organism used in this study was Saccharomyces cerevisiae CEN.PK haploid. 2 litre of production medium 

was prepared according to the requirements of  S. cerevisae, containing glucose 20.0 gL-1, peptone “Biolife” 20 

gL-1, yeast extract “Sifin” 10 gL-1. The medium was sterilized in autoclave for 30 min at 110 ˚C.  At the 
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beginning of fermentations initial OD was 0.20 – 0.25. The batch fermentations were carried out in a stirred tank 

fermenter (BTC EDF 5.3.1.), with a working volume of 4.5 litres. Temperature was controlled at 30.0 ± 0.2 ˚C, 

pH level at 5.5± 0.5, dissolved oxygen partial pressure at 60 ± 5 %. Agitation was ensured with two “rushton” 

style impellers at 600 rpm and airflow was ensured to 3 slpm. 10 ml of sample were taken every 1.5 hours for the 

entire fermentation cycle, which was terminated after 9.5 hours. Yeast biomass growth was evaluated by 

spectrophotometric measurements at 600 nm in a Helios Epsilon UV-visible spectrophotometer. The 

concentration of glucose was determined used glucose measurement device Accu-Chek Active. The concentration 

of ethanol in the medium was determined by liquid chromatography (HPLC). 

The pre-culture of the yeast Saccharomyces cerevisiae CEN.PK haploid was developed by inoculating 100 ml 

partially defined medium containing glucose, yeast extract, salts and trace elements with 0,15 ml of frozen 

culture at 37 ˚C in shaker flasks. 2 L of initial batch culture for fermentation was derived by inoculating 

overnight 100 ml (14 – 16 h, OD=2.2 – 2.7) flask pre-culture in batch medium. Dry pellets of S. cerevisiae were 

used for inoculation in yeast fermentations directly to batch medium with initial biomass concentrations of ~4 

g/L. 

2. Fermentation modeling 

Dynamic mass balances are the traditional chemical engineering approach to state estimation in bioreactors. 

Approach uses dynamic balances at the reactor scale and reasonable assumption regarding the regulatory 

structure of the organism. Making accurate measurements of bioreactor process variables, the possibility of using 

mass balance models has a high chance of success (Komives and Parker, 2003). 

The rates of cell growth, glucose consumption, ethanol production, oxygen concentration and volume are 

described for all functional states with mass balance equations as follows: 
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where  X - the concentration of biomass, g·L-1;  

 μ – specific cell growth rate, h-1; 

 S - concentration of substrate (glucose), g·L-1; 

 qS – specific substrate consumption rate, h-1; 

 E - ethanol concentration, g·L-1; 

 qE - specific ethanol production rate, h-1; 

 O – oxygen solubility, g·L-1; 

 qO - specific oxygen consumption rate, h-1; 

 kLa - volumetric oxygen transfer coefficient, h-1; 

 O
*
 - maximal solubility of oxygen, g·L-1; 

 V - volume, L;  

 FA – acid consumption rate, L·h-1; 

 FB – base consumption rate, L·h-1; 

 FANT – antifoam consumption rate, L·h-1; 

 FSMP - sampling rate, L·h-1; 

 FE – evaporation rate, L·h-1]; 

 FC – carbon loss rate, L·h-1. 

A substrate such as glucose is consumed by yeast to produce a number of carbon intermediates as well as to 

provide energy. The yeast then utilizes the carbon intermediates to synthesize a new cell material. If the sugar 

concentration in the broth in an aerobic yeast growth process exceeds a certain level, called the critical sugar 

mass concentration (Scrit), a part of the sugar is metabolized in ethanol. In the case of batch cultivation Scrit is 

assumed to be zero. A critical level of dissolved oxygen concentration for yeast growth process is assumed to be 

18%. The whole yeast growth process can be divided into at least five functional states in batch and fed-batch 

cultures (Pencheva et al., 2004; Roeva et al., 2006).  
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In the case of batch cultivation two phases are identified (Fig. 1.): 

1. The first functional state (I) is called the first ethanol production state. The process is defined to be in this 

state when the sugar mass concentration is above the critical level and there is sufficient dissolved 

oxygen. In this state ethanol is produced. 

2. The second functional state (II) is called the ethanol consumption state. The process is defined to be in 

this state when ethanol is available but there is no sugar in the broth, and the dissolved oxygen 

concentration is above the critical level. Ethanol is the only carbon source for yeast growth. 

 

Fig. 1. Identified functional states of the yeast batch cultivation 

(Roeva et al., 2006) assume that in principal, the functional state (I) can appear in all batch, fed-batch, and 

continuous yeast growth processes. The functional state (II) normally appears only in batch culture. A yeast 

growth process switches from one functional state to another like a state machine or automation familiar in 

computer science. Parameter functions of the local models in the states (I) and (II) are presented in Table 1.  

After entering state II yeast cell begin to synthesize the enzymes for gluconeogenezis so that cells can utilize 

ethanol as the carbon-source for growth. This causes a lag in the yeast growth. The lag term for functional state 

can be calculated by equation (1).  

Table 1 

Parameter functions of the local models (Tania Pencheva et al., 2004) 

Parameter 
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State I State II 

 
  

SkS

S


1  

EkE

E


2  

Sq  
SX

S

Y
kS

S


1  

0  

Eq  
ES

S

Y
kS

S


1   EX

E

Y
kE

E


 2  

Oq  
OX

S

Y
kS

S


1   OE

E

Y
kE

E


2  

where μi – maximum specific growth rates, h-1; 

 kS, kE – saturation constants, g·L-1; 

 YSX, YES, YEX, YOX, YOE – yield coefficients, g·g-1; 

   – lag term, h.  

)exp(1
1t

tt m
      (1) 

where  t – the current process time, h; 

 tm – time point of involving in lag phase, h; 

 t1 – the length of lag phase, g·g-1. 

Results and discussion 

The functional state model of yeast batch process was developed in MATLAB environment. The model consists 

of script M-Files and experimental data CSV files. Experimental data obtained from two batch fermentations of 

yeast Saccharomyces cerevisiae CEN.PK haploid.  The experimental data contains on-line measurements of 

pO2. Off-line data include measurements of biomass, substrate (glucose) and ethanol.  

The first batch experiment measured and model simulated curves are presented in the Fig 2.  
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Fig. 2.  1

st
 Batch fermentation measured, model simulated and identified curves 

The process was carried out in 9.5 hours. Model simulated curves X (biomass), S (substrate), E (ethanol) shows 

good accordance with a measured experimental data. The actual functional state is identified automatically from 

actual substrate and dissolved oxygen saturation concentration. The functional state plot (Fig. 2) shows that 

switching between the 1
st
 to the 2

nd
 functional state is approximately at 7.8 process hour. Then substrate 

concentration has reached the critical value. The estimated model parameters can be seen in Table 2. 

Table 2 

1
st
 batch experiment estimated values of functional state parameters 

Parameters of 

State I 

Estimated 

value 

Parameters of 

State II 

Estimated 

value 

mumax1 0.41 mumax2 0.158 

KS 0.0714 KE 0.181 

YSX 7.7 YEX 2.07 

YES 2.8 YOE 0.9 

YOX 0.25 t1 3.7 

kLa 55 tm 7.8 

- - kLa 55 

The second batch experiment measured and model simulated curves are presented in the Fig 3. The process was 

carried out in 11.5 hours. Model simulated curves X, S, E shows good accordance to a measured experimental 

data. The actual functional state is identified automatically from actual substrate and dissolved oxygen saturation 

concentration. The functional state plot (Fig. 3) shows that switching from the 1
st
 to the 2

nd
 functional state didn’t 

occur because process substrate and dissolved oxygen concentration was all the process time above critical 

values.  
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Fig. 3.  2
nd

 batch fermentation measured, model simulated and identified curves 

Parameters of the actual functional state were manually estimated by changing parameter value to reach the best 

experimental data and model simulated curve consistency. The estimated model parameters are shown in Table 

3. The 2 mumax coefficients where estimated in the 1
st
 functional state. Beginning of the process effective 

growing was observed and mumax value was estimated 0.376 but after the 8
th

 hour the growing was decreased 

and was estimated mumax value 0.125. Other parameters were similar to the 1
st
 batch process (see Fig 2.).  

Table 3 

2
nd

 batch experiment estimated values of functional state parameters 

Parameters of 

State I 

Estimated 

value 

mumax11 0.376 

mumax12 0.125 

KS 0.0714 

YSX 5.15 

YES 1.9 

YOX 0.35 

kLa 55 

Conclusion 

The application of the functional state modeling approach for two yeast batch fermentations modeling were 

presented in this paper. This approach shows good benefits for using it as base for the yeast batch fermentation 

model based control system development. The yeast growth functional state estimation is valuable to find out 

appropriate parameters that can adequately describe the actual physiological state of yeast growth process. 

Model simulated curves for X (biomass), S (substrate) and E (ethanol) showed good accordance to measured 

experimental and model simulated data for both batch fermentations. The greater deviation from measured and 

model simulated curves was observed with dissolved oxygen partial pressure value due to problems to identify a 

correct mass transfer coefficient value and functional state parameters. The functional state modelling approach 

parameters for actual functional state were manually estimated by changing parameter value to reach the best 

experimental data and model simulated curve consistency. In future is planned to improve yeast batch 

fermentation model with automatic functional state parameter estimation. 



International Conference on Applied Information and Communication Technologies (AICT2012), 26.-27. April, 2012, Jelgava, Latvia 

http://aict.itf.llu.lv 305 

Acknowledgements 

Paper becomes written by financial support of European Structural Fund – Project “Establishment of Latvia 

interdisciplinary interuniversity scientific group of systems biology” – realized by Latvia University of 

Agriculture (contract no. 2009/0207/1DP/1.1.1.2.0/09/IPIA/VIAA/128).  

References 

Hristozov, I., Pencheva, T., Tzonkov, S., & Hitzmann, B., 2005. Functional State Modelling Approach for Batch 

Cultivation of Saccharomyces cerevisiae. Biomedical Engineering, 19(1), pp.69-74. 

Hunag, W.-H., Shieh, G. S., & Wang, F.-S., 2011. Optimization of fed-batch fermentation using mixture of 

sugars to produce ethanol. Journal of the Taiwan Institute of Chemical Engineers. Taiwan Institute of 

Chemical Engineers. doi:10.1016/j.jtice.2011.06.007 

Komives, C., & Parker, R. S., 2003. Bioreactor state estimation and control. Current Opinion in Biotechnology, 

14(5), pp.468-474. doi:10.1016/j.copbio.2003.09.001 

Kumoro, A., Ngoh, G., Hasan, M., Chew, F., & Tham, M., 2009. Production of Ethanol by Fed-Batch 

Fermentation. Pertanika Journal of Science and Technology, 17(2), pp.399–408. Universiti Putra 

Malaysia Press.  

Mednis, M., Meitalovs, J., Viļums, S., Vanags, J., & Galvanauskas, V., 2010. Bioprocess monitoring and control 

using mobile devices. Information Technology and control, 39(3), pp.195-201. 

Nagy, Z., 2007. Model based control of a yeast fermentation bioreactor using optimally designed artificial neural 

networks. Chemical Engineering Journal, 127(1-3), pp.95-109. doi:10.1016/j.cej.2006.10.015 

Pencheva, T., & Hristozov, I., 2005. Modelling of Functional States during Saccharomyces cerevisiae Fed-batch 

Cultivation, pp.8-16. 

Pencheva, T., Hristozov, I., Tzonkov, S., & Hitzmann, B., 2004. Functional State Modelling of Saccharomyces 

cerevisiae Cultivations. Yeast, 1, pp.1-15. 

Renard, F., Wouwer, a, Valentinotti, S., & Dumur, D., 2006. A practical robust control scheme for yeast fed-

batch cultures – An experimental validation. Journal of Process Control, 16(8), pp.855-864. 

doi:10.1016/j.jprocont.2006.02.003 

Roeva, O., Pencheva, T., Tzonkov, S., Arndt, M., Hitzmann, B., Kleist, S., Miksch, G., et al., 2007. Multiple 

model approach to modelling of Escherichia coli fed-batch cultivation extracellular production of 

bacterial phytase. Electronic Journal of Biotechnology, 10(4). doi:10.2225/vol10-issue4-fulltext-5 

Roeva, O., Pencheva, T., Viesturs, U., & Tzonkov, S., 2006. Modelling of Fermentation Processes Based on 

State Decomposition, pp.1 - 12. 

Viļums, S., 2011. Towards application of cellular metabolic model of Saccharomyces cerevisae in bioprocess 

control algorithm. 10th International Scientific Conference Engineering for Rural development, Vol 10, 

Jelgava, Latvia, pp. 97-102. 


